7,779 research outputs found

    Precision Measurement of Orthopositronium Decay Rate Using SiO_2 Powder

    Get PDF
    The intrinsic decay rate of orthopositronium formed in SiO2{\rm SiO_2} powder is measured using the direct 2Îł2\gamma correction method such that the time dependence of the pick-off annihilation rate is precisely determined using high energy-resolution germanium detectors. As a systematic test, two different types of SiO2{\rm SiO_2} powder are used with consistent findings. The intrinsic decay rate of orthopositronium is found to be 7.0396±0.0012(stat.)±0.0011(sys.)ÎŒs−17.0396\pm0.0012 (stat.)\pm0.0011 (sys.)\mu s^{-1}, which is consistent with previous measurements using SiO2{\rm SiO_2} powder with about twice the accuracy. Results agree well with a recent O(α2)O(\alpha^2) QED prediction, varying 3.8−5.63.8-5.6 experimental standard deviations from other measurements.Comment: 16 pages, 7 figures included. To be published in Physics Letters

    The evolution of the high energy tail in the quiescent spectrum of the soft X-ray transient Aql X-1

    Full text link
    A moderate level of variability has been detected in the quiescent luminosity of several neutron star soft X-ray transients. Spectral variability was first revealed by Chandra observations of Aql X-1 in the four months that followed the 2000 X-ray outburst. By adopting the canonical model for quiescent spectrum of soft X-ray transients, i.e. an absorbed neutron star atmosphere model plus a power law tail, Rutledge et al. (2002a) concluded that the observed spectral variations can be ascribed to temperature variations of the neutron star atmosphere. These results can hardly be reconciled with the neutron star cooling that is expected to take place in between outbursts (after deep crustal heating in the accretion phase). Here we reanalyse the Chandra spectra of Aql X-1, together with a long BeppoSAX observation in the same period, and propose a different interpretation of the spectral variability: that this is due to correlated variations of the power law component and the column density (>5, a part of which might be intrinsic to the source), while the temperature and flux of the neutron star atmospheric component remained unchanged. This lends support to the idea that the power law component arises from emission at the shock between a radio pulsar wind and inflowing matter from the companion star.Comment: 6 pages, 2 figures. Accepted for publication on Ap

    Solution of Orthopositronium lifetime Puzzle

    Full text link
    The intrinsic decay rate of orthopositronium formed in SiO2{\rm SiO_2} powder is measured using the direct 2Îł2\gamma correction method such that the time dependence of the pick-off annihilation rate is precisely determined. The decay rate of orthopositronium is found to be 7.0396±0.0012(stat.)±0.0011(sys.)ÎŒs−17.0396\pm0.0012 (stat.)\pm0.0011 (sys.)\mu s^{-1}, which is consistent with our previous measurements with about twice the accuracy. Results agree well with the O(α2)O(\alpha^2) QED prediction, and also with a result reported very recently using nanoporous film

    Quasi-Superradiant Soliton State of Matter in Quantum Metamaterials

    Get PDF
    Strong interaction of a system of quantum emitters (e.g., two-level atoms) with electromagnetic field induces specific correlations in the system accompanied by a drastic insrease of emitted radiation (superradiation or superfluorescence). Despite the fact that since its prediction this phenomenon was subject to a vigorous experimental and theoretical research, there remain open question, in particular, concerning the possibility of a first order phase transition to the superradiant state from the vacuum state. In systems of natural and charge-based artificial atome this transition is prohibited by "no-go" theorems. Here we demonstrate numerically a similar transition in a one-dimensional quantum metamaterial - a chain of artificial atoms (qubits) strongly interacting with classical electromagnetic fields in a transmission line. The system switches from vacuum state with zero classical electromagnetic fields and all qubits being in the ground state to the quasi-superradiant (QS) phase with one or several magnetic solitons and finite average occupation of qubit excited states along the transmission line. A quantum metamaterial in the QS phase circumvents the "no-go" restrictions by considerably decreasing its total energy relative to the vacuum state by exciting nonlinear electromagnetic solitons with many nonlinearly coupled electromagnetic modes in the presence of external magnetic field.Comment: 6 pages, 4 figure

    Search for CP-violation in Positronium Decay

    Full text link
    CP-violation in the quark sector has been well established over the last decade, but has not been observed in the lepton sector. We search for CP-violating decay processes in positronium, using the angular correlation of (\vec{S}\cdot\vec{k_{1}})(\vec{S}\cdot\vec{k_{1}}\times\vec{k_{2}}), where \vec{S} is the the positronium spin and \vec{k_{1}}, \vec{k_{2}} are the directions of the positronium decay photons. To a sensitivity of 2.2\times10^{-3}, no CP-violation has been found, which is at the level of the CP-violation amplitude in the K meson. A 90% confidence interval of the CP-violation parameter (C_{CP}) was determined to be -0.0023 < C_{CP} < 0.0049. This result is a factor 7 more strict than that of the previous experiment

    On the Chandra X-ray Sources in the Galactic Center

    Full text link
    Recent deep Chandra surveys of the Galactic center region have revealed the existence of a faint, hard X-ray source population. While the nature of this population is unknown, it is likely that several types of stellar objects contribute. For sources involving binary systems, accreting white dwarfs and accreting neutron stars with main sequence companions have been proposed. Among the accreting neutron star systems, previous studies have focused on stellar wind-fed sources. In this paper, we point out that binary systems in which mass transfer occurs via Roche lobe overflow (RLOF) can also contribute to this X-ray source population. A binary population synthesis study of the Galactic center region has been carried out, and it is found that evolutionary channels for neutron star formation involving the accretion induced collapse of a massive ONeMg white dwarf, in addition to the core collapse of massive stars, can contribute to this population. The RLOF systems would appear as transients with quiescent luminosities, above 2 keV, in the range from 10^31-10^32 ergs/s. The results reveal that RLOF systems primarily contribute to the faint X-ray source population in the Muno et al. (2003) survey and wind-fed systems can contribute to the less sensitive Wang et al. (2002) survey. However, our results suggest that accreting neutron star systems are not likely to be the major contributor to the faint X-ray source population in the Galactic center.Comment: 12 pages, 3 figures, 1 table ApJ in press (Dec 2004). Substantial change

    Search for new particles at LEP 1.5

    Get PDF

    A search for massive neutral bosons in orthopositronium decay

    Get PDF
    We have searched for an exotic decay of orthopositronium into a single photon and a short-lived neutral boson in the hitherto unexplored mass region above 900 keV/c2{\rm keV}/{\it c}^{2}, by noting that this decay is one of few remaining candidates which could explain the discrepancy of the orthopositronium decay-rate. A high-resolution measurement of the associated photon energy spectrum was carried out with a germanium detector to search for a sharp peak from this two-body decay. Our negative result provides the upper-limits of\mbox{ }2.0×10−42.0 \times 10^{-4} on the branching ratio of such a decay in the mass region from 847 to 1013 keV/c2{\rm keV}/{\it c}^{2}, and excludes the possibility of this decay mode explaining the discrepancy in the orthopositronium decay-rate.Comment: a LaTeX file (text 7 pages) and a uuencoded gz-compressed PostScript file (text 7 pages + figures 4 pages

    Radial Bargmann representation for the Fock space of type B

    Get PDF
    Let Μα,q\nu_{\alpha,q} be the probability and orthogonality measure for the qq-Meixner-Pollaczek orthogonal polynomials, which has appeared in \cite{BEH15} as the distribution of the (α,q)(\alpha,q)-Gaussian process (the Gaussian process of type B) over the (α,q)(\alpha,q)-Fock space (the Fock space of type B). The main purpose of this paper is to find the radial Bargmann representation of Μα,q\nu_{\alpha,q}. Our main results cover not only the representation of qq-Gaussian distribution by \cite{LM95}, but also of q2q^2-Gaussian and symmetric free Meixner distributions on R\mathbb R. In addition, non-trivial commutation relations satisfied by (α,q)(\alpha,q)-operators are presented.Comment: 13 pages, minor changes have been mad

    XMM-Newton observations of the neutron star X-ray transient KS 1731-260 in quiescence

    Get PDF
    We report on XMM-Newton observations performed on 2001 September 13-14 of the neutron star X-ray transient KS 1731-260 in quiescence. The source was detected at an unabsorbed 0.5-10 keV flux of only 4 - 8 x 10^{-14} erg/s, depending on the model used to fit the data, which for a distance of 7 kpc implies a 0.5-10 keV X-ray luminosity of approximately 2 - 5 x 10^{32} erg/s. The September 2001 quiescent flux of KS 1731-260 is lower than that observed during the Chandra observation in March 2001. In the cooling neutron star model for the quiescent X-ray emission of neutron star X-ray transients, this decrease in the quiescent flux implies that the crust of the neutron star in KS 1731-260 cooled down rapidly between the two epochs, indicating that the crust has a high conductivity. Furthermore, enhanced cooling in the neutron star core is also favored by our results.Comment: Accepter for publication in ApJ Letters, 22 May 200
    • 

    corecore